Social Icons

Kamis, 15 Mei 2014

Pengertian Anabolisme, Fotosintesis, Reaksi Gelap dan Reaksi Terang


Anabolisme adalah peristiwa penyusunan zat dari senyawa sederhana menjadi senyawa lebih kompleks yang berlangsung dalam tubuh makhluk hidup.
Penyusunan senyawa kimia umumnya memerlukan energi, misalnya energi cahaya dalam fotosintesis dan energi kimia dalam kemosintesis.

Fotosintesis
Fotosintesis berasal dari kata foton yang artinya cahaya dan sintesis yang artinya penyusunan.
Jadi, fotosintesis adalah proses penyusunan bahan organik (karbohidrat) dari H2O dan CO2 dengan bantuan energi cahaya. 

Proses ini hanya dapat terjadi pada tumbuhan yang mempunyai klorofil, yaitu pigmen yang berfungsi sebagai penangkap energi cahaya matahari. Organela yang berperan dalam fotosintesis ialah kloroplas.

Kloroplas mengandung pigmen klorofil dan menyebabkan warna hijau pada daun.
Kloroplas mempunyai membran ganda (luar dan dalam) yang mengelilingi matriks fluida yang disebut stroma.
Stroma mengandung enzim yang berperan untuk menangkap CO2 dan mereduksinya. Sistem membran di dalam stroma membentuk kantung-kantung datar yang disebut tilakoid. Pada beberapa tempat tilakoid bertumpuk membentuk grana. Klorofil dan pigmen lainnya terdapat pada membran tilakoid.

Pigmen yang terdapat pada kloroplas, yaitu klorofil a (berwarna hijau), klorofil b (berwarna hijau tua), dan karoten (berwarna kuning sampai jingga). Pigmen tersebut mengelompok dalam membran tilakoid membentuk perangkat pigmen yang penting dalam fotosintesis.

Fotosintesis berlangsung dalam 2 tahap reaksi, yaitu reaksi terang (light-dependent reaction) dan reaksi gelap (light-independent reaction). Reaksi terang berlangsung jika ada cahaya, sedangkan reaksi gelap berlangsung tanpa memerlukan cahaya.

a. Reaksi Terang (Light-Dependent Reaction)
Reaksi terang terjadi dalam membran tilakoid yang di dalamnya terdapat pigmen klorofil a, klorofil b, dan pigmen tambahan yaitu karoten. Pigmen-pigmen ini menyerap cahaya ungu, biru, dan merah lebih baik daripada warna cahaya lain.
Reaksi terang merupakan reaksi penangkapan energy cahaya. Energi cahaya yang diserap oleh membran tilakoid akan menaikkan elektron berenergi rendah yang berasal dari H2O. Elektron-elektron bergerak dari klorofil a menuju sistem transpor elektron yang menghasilkan ATP (dari ADP + P).

Elektron-elektron berenergi ini juga ditangkap oleh NADP+. Setelah menerima elektron, NADP+ segera berubah menjadi NADPH. Molekul-molekul ini (ATP dan NADPH) menyimpan energi untuk sementara waktu dalam bentuk elektron berenergi yang akan digunakan untuk mereduksi CO2.
Reaksi terang melibatkan dua jenis fotosistem, yaitu fotosistem I dan fotosistem II.

Tilakoid terdapat beberapa pigmen yang berfungsi menyerap energi cahaya.
Pigmen-pigmen itu antara lain klorofil a, klorofil b, dan pigmen tambahan karotenoid.
Setiap jenis pigmen menyerap cahaya dengan panjang gelombang tertentu.
Molekul klorofil dan pigmen asesori (tambahan) membentuk satu kesatuan unit sistem yang dinamakan fotosistem. Setiap fotosistem menangkap cahaya dan memindahkan energi yang dihasilkan ke pusat reaksi, yaitu suatu kompleks klorofil dan protein-protein yang berperan langsung dalam fotosintesis. 
Fotosistem I terdiri atas klorofil a dan pigmen tambahan yang menyerap kuat energi cahaya dengan panjang gelombang 700 nm sehingga sering disebut P700.

Sementara itu, fotosistem II tersusun atas klorofil a yang menyerap kuat energi cahaya dengan panjang gelombang 680 nm sehingga sering disebut P680.
Ketika suatu molekul pigmen menyerap energi cahaya, energi itu dilewatkan dari suatu molekul pigmen ke molekul pigmen lainnya hingga mencapai pusat reaksi.
Setelah energy sampai di P700 atau di P680 pada pusat reaksi, sebuah elektron kemudian dilepaskan menuju tingkat energi lebih tinggi. Elektron berenergi ini akan disumbangkan ke akseptor elektron.
Dalam reaksi terang, terdapat 2 jalur perjalanan elektron, yaitu jalur elektron siklik dan jalur elektron nonsiklik.

1) Jalur elektron siklik
Jalur elektron siklik dimulai setelah kompleks pigmen fotosistem I menyerap energi matahari. Pada jalur ini, elektron berenergi tinggi (e-) meninggalkan pusat reaksi fotosistem I, tetapi akhirnya elektron itu kembali lagi. Elektron berenergi (e-) meninggalkan fotosistem I (pusat reaksi klorofil a) dan ditangkap oleh akseptor elektron kemudian melewatkannya dalam sistem transpor elektron sebelum kembali ke fotosistem I. Jalur elektron siklik hanya menghasilkan ATP.

Namun, sebelum kembali ke fotosintem I, elektronelektron itu memasuki sistem transpor elektron, yaitu suatu rangkaian protein pembawa yang mengalirkan elektron dari satu protein pembawa ke protein pembawa berikutnya. Ketika elektron melalui protein pembawa ke protein pembawa berikutnya, energi yang akan digunakan untuk membentuk ATP dilepaskan dan disimpan dalam bentuk gradien hidrogen (H+). Saat ion hydrogen ini melalui gradien elektrokimia melalui kompleks ATPsintase, terjadilah pembentukan ATP.
ATP terbentuk karena adanya penambahan gugus fosfat pada senyawa ADP yang diatur oleh energi cahaya sehingga prosesnya disebut fotofosforilasi.
Pembentukan ATP terjadi melalui rute transpor elektron siklis maka disebut juga fotofosforilasi siklis.

2) Jalur elektron nonsiklik
Reaksi ini dimulai ketika kompleks pigmen fotosistem II (P 680) menyerap energi cahaya dan elektron berenergi tinggi meninggalkan molekul pusat reaksi (klorofil a).
Fotosistem II mengambil elektron dari hasil penguraian air (fotolisis) dan menghasilkan oksigen melalui reaksi berikut. 
 Oksigen dilepaskan oleh kloroplas sebagai gas oksigen.
Sementara itu, ion hidrogen (H+) untuk sementara waktu tinggal di ruang tilakoid.

Elektron-elektron berenergi tinggi yang meninggalkan fotosistem II ditangkap oleh akseptor elektron dan mengirimnya ke sistem transpor elektron. Elektron-elektron ini melewati satu pembawa ke pembawa lainnya dan energy untuk pembentukan ATP dikeluarkan dan disimpan dalam bentuk gradien hidrogen (H+).
Ketika ion-ion hydrogen melewati gradien elektrokimia serta kompleks sintase ATP, terbentuklah ATP secara kemiosmosis. Sementara itu, elektron-elektron berenergi rendah meninggalkan sistem transpor elektron menuju fotosistem I. 

Ketika fotosistem I menyerap energi cahaya, elektron-elektron berenergi tinggi meninggalkan pusat reaksi (klorofil a) dan ditangkap oleh akseptor elektron. Selanjutnya, sistem transpor elektron membawa elektron-elektron ini ke NADP+. Setelah itu, NADP+ mengikat ion H+ terjadilah NADPH2, seperti reaksi berikut.
Dengan demikian jalur elektron nonsiklis menghasilkan ATP dan NADPH2. NADPH2 dan ATP yang dihasilkan dalam elektron nonsiklik akan digunakan dalam reaksi tahap kedua (reaksi gelap) sintesis karbohidrat.

b. Reaksi Gelap (Light-Independent Reaction)
Reaksi gelap merupakan reaksi tahap kedua dari fotosintesis. Disebut reaksi gelap karena reaksi ini tidak memerlukan cahaya. Reaksi gelap terjadi di dalam stroma kloroplas.
Reaksi gelap pertama kali ditemukan oleh Malvin Calvin dan Andrew Benson.
Oleh karena itu, reaksi gelap fotosintesis sering disebut siklus Calvin-Benson atau siklus Calvin. Siklus Calvin berlangsung dalam tiga tahap, yaitu fase fiksasi, fase reduksi, dan fase regenerasi. Pada fase fiksasi terjadi penambatan CO2 oleh ribulose bifosfat (Ribulose biphosphat = RuBP) menjadi 3-fosfogliserat (3- phosphoglycerate = PGA). 
Reaksi ini dikatalisis oleh enzim ribulose bifosfat karboksilase (Rubisco).
Pada fase reduksi diperlukan ATP dan ion H+ dari NADPH2 untuk mereduksi 3-fosfogliserat (PGA) menjadi 1,3- bifosfogliserat (PGAP) kemudian membentuk fosfogliseraldehid (glyceraldehyde-3-phosphat = PGAL atau G3P = glukosa 3-fosfat).
Pada fase regenerasi, terjadi pembentukan kembali RuBP dari PGAL atau G3P. Dengan terbentuknya RuBP, penambatan CO2 kembali berlangsung.
Secara ringkas reaksi gelap atau siklus Calvin dijelaskan dalam skema :
 Link Terkait

 
  

Tidak ada komentar:

Posting Komentar